Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Glob Chang Biol ; 30(4): e17279, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38619007

ABSTRACT

There are close links between solar UV radiation, climate change, and plastic pollution. UV-driven weathering is a key process leading to the degradation of plastics in the environment but also the formation of potentially harmful plastic fragments such as micro- and nanoplastic particles. Estimates of the environmental persistence of plastic pollution, and the formation of fragments, will need to take in account plastic dispersal around the globe, as well as projected UV radiation levels and climate change factors.


Subject(s)
Solar Energy , Ultraviolet Rays , Ultraviolet Rays/adverse effects , Climate Change , Environmental Pollution , Weather
2.
Photochem Photobiol Sci ; 23(4): 629-650, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38512633

ABSTRACT

This Assessment Update by the Environmental Effects Assessment Panel (EEAP) of the United Nations Environment Programme (UNEP) considers the interactive effects of solar UV radiation, global warming, and other weathering factors on plastics. The Assessment illustrates the significance of solar UV radiation in decreasing the durability of plastic materials, degradation of plastic debris, formation of micro- and nanoplastic particles and accompanying leaching of potential toxic compounds. Micro- and nanoplastics have been found in all ecosystems, the atmosphere, and in humans. While the potential biological risks are not yet well-established, the widespread and increasing occurrence of plastic pollution is reason for continuing research and monitoring. Plastic debris persists after its intended life in soils, water bodies and the atmosphere as well as in living organisms. To counteract accumulation of plastics in the environment, the lifetime of novel plastics or plastic alternatives should better match the functional life of products, with eventual breakdown releasing harmless substances to the environment.


Subject(s)
Plastics , Water Pollutants, Chemical , Humans , Plastics/toxicity , Ecosystem , Ultraviolet Rays , Climate Change , Water Pollutants, Chemical/analysis
4.
Plants (Basel) ; 10(11)2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34834632

ABSTRACT

Flavonoids are favored compounds in plant responses to UV exposure and act in UV absorption and antioxidant activity. Here, it was investigated, with okra as a model species, how fast plants can react to changing UV conditions and to what extent these reactions take place. Okra (Abelmoschus esculentus) plants were exposed to either full or nearly no UV radiation. The diurnal rhythm of the plants was driven by the UV radiation and showed up to a 50% increase of the flavonoid content (measured optically in the +UV plants). This was reflected only in the trends in UV-absorption and antioxidant activity of the extracts but not in the soluble flavonoid glycosides and hydroxycinnamic acid derivatives. In a second experiment, a transfer from a -UV to a +UV condition at 9:00 CDT showed the immediate start of the diurnal rhythm, while this did not occur if the transfer occurred later in the day; these plants only started a diurnal rhythm the following day. After an adaptation period of seven days, clear differences between the +UV and -UV plants could be found in all parameters, whereas plants transferred to the opposite UV condition settle between the +UV and -UV plants in all parameters. Broadly, it can be seen that the flavonoid contents and associated functions in the plant are subject to considerable changes within one day and within several days due to the UV conditions and that this can have a considerable impact on the quality of plant foods.

5.
Physiol Plant ; 173(3): 725-735, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34375003

ABSTRACT

The accumulation of soluble and cell-wall bound UV-absorbing compounds (i.e., flavonoids) in the epidermis and the mesophyll of leaves is a response of plants to UV exposure. These compounds are known to function in UV screening, but they are also of potential value for food quality. One way to non-destructively monitor UV screening in leaves is by optical methods, from which UVA-PAM and Dualex instruments stand out. The degree and rapidity to which plants can modulate UV screening in response to fluctuating solar UV conditions is poorly understood. In this study, okra plants were exposed to two solar radiation treatments (near-ambient UV [+UV] and attenuated UV [-UV]) and the epidermal UV transmittance (TUV ; UVA-PAM) and flavonoid index (Dualex) were measured in the youngest and second youngest mature leaves over three consecutive days and within an individual day. The day-to-day (measured near solar noon) and diurnal (over the course of a day) measurements of leaf optical properties indicated that TUV decreased and flavonoid index increased in the adaxial epidermis ~50% until 15:00 CDT then returned close to morning values later in the day. Correlations between UV-B radiation and TUV and flavonoid index revealed highest values 30 min to 1 h prior to the measurements. These findings indicate that plants can respond quickly to fluctuating solar UV conditions and underlines the importance of the harvest-time point for health-promoting compounds in fruit and vegetables. Our findings also indicate that the UVA-PAM and the Dualex instruments are both suitable instruments to monitor rapid changes in UV screening in plants.


Subject(s)
Sunscreening Agents , Ultraviolet Rays , Epidermis , Plant Epidermis , Plant Leaves , Sunlight
6.
Glob Chang Biol ; 27(22): 5681-5683, 2021 11.
Article in English | MEDLINE | ID: mdl-34392574

ABSTRACT

The Montreal Protocol and its Amendments have been highly effective in protecting the stratospheric ozone layer, preventing global increases in solar ultraviolet-B radiation (UV-B; 280-315 nm) at Earth's surface, and reducing global warming. While ongoing and projected changes in UV-B radiation and climate still pose a threat to human health, food security, air and water quality, terrestrial and aquatic ecosystems, and construction materials and fabrics, the Montreal Protocol continues to play a critical role in protecting Earth's inhabitants and ecosystems by addressing many of the United Nations Sustainable Development Goals.


Subject(s)
Ozone Depletion , Ozone , Climate Change , Ecosystem , Humans , Stratospheric Ozone , Ultraviolet Rays/adverse effects
7.
Curr Biol ; 31(14): R885-R887, 2021 07 26.
Article in English | MEDLINE | ID: mdl-34314709

ABSTRACT

As well as guiding pollinators to the centre of flowers, areas of the corolla that absorb UV radiation may help to protect floral reproductive parts from solar UV radiation that would otherwise be reflected onto them. In their recent article, 'Floral pigmentation has responded rapidly to global change in ozone and temperature', Koski et al.1 compared herbarium specimens collected between 1941 and 2017 to investigate whether the size of the UV-absorbing area in the centre of flowers (called 'bullseyes', UV proportion, or UVP) has changed relative to the size of the flower over this period. The article, and a subsequent feature2, describe an increase in UVP of ∼2% per year across all taxa examined. However, the study's main conclusion that this trend can be partially related to changes in ozone and temperature does not withstand close examination.


Subject(s)
Flowers , Stratospheric Ozone , Pigmentation , Reproduction , Ultraviolet Rays
8.
Physiol Plant ; 173(3): 663-665, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33847395
9.
Photochem Photobiol Sci ; 18(7): 1685-1699, 2019 Jul 10.
Article in English | MEDLINE | ID: mdl-31166333

ABSTRACT

The UVR8 photoreceptor in Arabidopsis thaliana is specific for ultraviolet-B (UV-B; 280-315 nm) radiation and its activation leads to a number of UV-B acclimation responses, including the accumulation of flavonoids. UVR8 participates in a signaling cascade involving COP1 and HY5 so that the absence of any of these components results in a reduction in the ability of a plant to accumulate flavonoids in response to UV; Cop1 mutants show high dropouts and hy5-ks50 hyh double mutants show very low levels of flavonoids. The predominant phenolics in Arabidopsis thaliana are sinapic acid derivatives as well as non-aclyated quercetin and kaempferol di- and triglycosides containing glucose and rhamnose as glycosylated sugar moieties. How this flavonoid profile in Arabidopsis thaliana is affected by UV radiation, how rapidly these changes occur in changing UV conditions, and which components of the UV-B signalling pathway are involved in rapid UV acclimatization reactions is poorly understood. In the present study, we examined these questions by characterizing the flavonoid profiles of Arabidopsis thaliana signalling mutants and wild types grown under different UV levels of constant UV-B+PAR ratios and then transferring a subset of plants to alternate UV conditions. Results indicate that flavonoid accumulation in Arabidopsis thaliana is triggered by UV and this response is amplified by higher levels of UV but not by all compounds to the same extent. The catechol structure in quercetin seems to be less important than the glycosylation pattern, e.g. having 2 rhamnose moieties in determining responsivity. At low UV+PAR intensities the introduction of UV leads to an initial tendency of increase of flavonoids in the wild types that was detected after 3 days. It took 7 days for these changes to be detected in plants grown under high UV+PAR intensities suggesting a priming of PAR. Thus, the flavonoid profile in Arabidopsis thaliana is altered over time following exposure to UV and PAR, but the functional significance of these changes is currently unclear.


Subject(s)
Arabidopsis/radiation effects , Flavonoids/metabolism , Signal Transduction/radiation effects , Ultraviolet Rays , Arabidopsis/chemistry , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Chromatography, High Pressure Liquid , Chromosomal Proteins, Non-Histone/metabolism , DNA-Binding Proteins , Flavonoids/analysis , Mutagenesis , Plant Leaves/chemistry , Plant Leaves/metabolism , Plant Leaves/radiation effects , Spectrometry, Mass, Electrospray Ionization , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
10.
Sci Total Environ ; 682: 239-246, 2019 Sep 10.
Article in English | MEDLINE | ID: mdl-31121350

ABSTRACT

Aquatic and terrestrial organisms are being exposed to a number of anthropogenically-induced environmental stresses as a consequence of climate change. In addition, climate change is altering various linkages that exist between ecosystems on land and in water. Here we compare and contrast how climate change is altering aquatic and terrestrial environments and address some of the ways that the organisms in these ecosystems, especially the primary producers, are being affected by climate change factors, including changes in temperature, moisture, atmospheric carbon dioxide and solar UV radiation. Whereas there are some responses to climate change in common between terrestrial and aquatic ecosystems (e.g., changes in species composition and shifting geographic ranges and distributions), there are also responses that fundamentally differ between these two (e.g., responses to UV radiation). Climate change is also disrupting land-water connections in ways that influence biogeochemical and hydrologic cycles, and biosphere-atmosphere interactions in ways that can modify how aquatic and terrestrial ecosystems are affected by climate change and can influence climate change. The effects of climate change on these ecosystems are having wide-ranging effects on ecosystem biodiversity, structure and function and the abilities of these systems to provide essential services.


Subject(s)
Climate Change , Ecosystem , Biodiversity
11.
PLoS One ; 14(2): e0210470, 2019.
Article in English | MEDLINE | ID: mdl-30716078

ABSTRACT

Dryland ecosystems cover nearly 45% of the Earth's land area and account for large proportions of terrestrial net primary production and carbon pools. However, predicting rates of plant litter decomposition in these vast ecosystems has proven challenging due to their distinctly dry and often hot climate regimes, and potentially unique physical drivers of decomposition. In this study, we elucidated the role of photopriming, i.e. exposure of standing dead leaf litter to solar radiation prior to litter drop that would chemically change litter and enhance biotic decay of fallen litter. We exposed litter substrates to three different UV radiation treatments simulating three-months of UV radiation exposure in southern New Mexico: no light, UVA+UVB+Visible, and UVA+Visible. There were three litter types: mesquite leaflets (Prosopis glandulosa, litter with high nitrogen (N) concentration), filter paper (pure cellulose), and basswood (Tilia spp, high lignin concentration). We deployed the photoprimed litter in the field within a large scale precipitation manipulation experiment: ∼50% precipitation reduction, ∼150% precipitation addition, and ambient control. Our results revealed the importance of litter substrate, particularly N content, for overall decomposition in drylands, as neither filter paper nor basswood exhibited measurable mass loss over the course of the year-long study, while high N-containing mesquite litter exhibited potential mass loss. We saw no effect of photopriming on subsequent microbial decay. We did observe a precipitation effect on mesquite where the rate of decay was more rapid in ambient and precipitation addition treatments than in the drought treatment. Overall, we found that precipitation and N played a critical role in litter mass loss. In contrast, photopriming had no detected effects on mass loss over the course of our year-long study. These results underpin the importance of biotic-driven decomposition, even in the presence of photopriming, for understanding litter decomposition and biogeochemical cycles in drylands.


Subject(s)
Plant Leaves/radiation effects , Plants/radiation effects , Prosopis/radiation effects , Tilia/radiation effects , Cellulose/metabolism , Desert Climate , Ecosystem , Lignin/metabolism , New Mexico , Nitrogen/metabolism , Plant Leaves/physiology , Plant Physiological Phenomena/radiation effects , Prosopis/physiology , Tilia/physiology , Ultraviolet Rays
12.
Photochem Photobiol Sci ; 18(5): 970-988, 2019 May 15.
Article in English | MEDLINE | ID: mdl-30720036

ABSTRACT

Plants perceive ultraviolet-B (UV-B) radiation through the UV-B photoreceptor UV RESISTANCE LOCUS 8 (UVR8), and initiate regulatory responses via associated signalling networks, gene expression and metabolic pathways. Various regulatory adaptations to UV-B radiation enable plants to harvest information about fluctuations in UV-B irradiance and spectral composition in natural environments, and to defend themselves against UV-B exposure. Given that UVR8 is present across plant organs and tissues, knowledge of the systemic signalling involved in its activation and function throughout the plant is important for understanding the context of specific responses. Fine-scale understanding of both UV-B irradiance and perception within tissues and cells requires improved application of knowledge about UV-attenuation in leaves and canopies, warranting greater consideration when designing experiments. In this context, reciprocal crosstalk among photoreceptor-induced pathways also needs to be considered, as this appears to produce particularly complex patterns of physiological and morphological response. Through crosstalk, plant responses to UV-B radiation go beyond simply UV-protection or amelioration of damage, but may give cross-protection over a suite of environmental stressors. Overall, there is emerging knowledge showing how information captured by UVR8 is used to regulate molecular and physiological processes, although understanding of upscaling to higher levels of organisation, i.e. organisms, canopies and communities remains poor. Achieving this will require further studies using model plant species beyond Arabidopsis, and that represent a broad range of functional types. More attention should also be given to plants in natural environments in all their complexity, as such studies are needed to acquire an improved understanding of the impact of climate change in the context of plant-UV responses. Furthermore, broadening the scope of experiments into the regulation of plant-UV responses will facilitate the application of UV radiation in commercial plant production. By considering the progress made in plant-UV research, this perspective highlights prescient topics in plant-UV photobiology where future research efforts can profitably be focussed. This perspective also emphasises burgeoning interdisciplinary links that will assist in understanding of UV-B effects across organisational scales and gaps in knowledge that need to be filled so as to achieve an integrated vision of plant responses to UV-radiation.


Subject(s)
Plant Leaves/metabolism , Plants/metabolism , Ultraviolet Rays , Ecological and Environmental Phenomena
13.
Photochem Photobiol Sci ; 18(3): 681-716, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30810560

ABSTRACT

Exposure of plants and animals to ultraviolet-B radiation (UV-B; 280-315 nm) is modified by stratospheric ozone dynamics and climate change. Even though stabilisation and projected recovery of stratospheric ozone is expected to curtail future increases in UV-B radiation at the Earth's surface, on-going changes in climate are increasingly exposing plants and animals to novel combinations of UV-B radiation and other climate change factors (e.g., ultraviolet-A and visible radiation, water availability, temperature and elevated carbon dioxide). Climate change is also shifting vegetation cover, geographic ranges of species, and seasonal timing of development, which further modifies exposure to UV-B radiation. Since our last assessment, there has been increased understanding of the underlying mechanisms by which plants perceive UV-B radiation, eliciting changes in growth, development and tolerances of abiotic and biotic factors. However, major questions remain on how UV-B radiation is interacting with other climate change factors to modify the production and quality of crops, as well as important ecosystem processes such as plant and animal competition, pest-pathogen interactions, and the decomposition of dead plant matter (litter). In addition, stratospheric ozone depletion is directly contributing to climate change in the southern hemisphere, such that terrestrial ecosystems in this region are being exposed to altered patterns of precipitation, temperature and fire regimes as well as UV-B radiation. These ozone-driven changes in climate have been implicated in both increases and reductions in the growth, survival and reproduction of plants and animals in Antarctica, South America and New Zealand. In this assessment, we summarise advances in our knowledge of these and other linkages and effects, and identify uncertainties and knowledge gaps that limit our ability to fully evaluate the ecological consequences of these environmental changes on terrestrial ecosystems.


Subject(s)
Climate Change , Stratospheric Ozone/analysis , Ultraviolet Rays , Animals , Carbon Dioxide/analysis , Ecosystem , Environmental Pollutants/analysis , Fresh Water/analysis , Global Warming , Harmful Algal Bloom/radiation effects , Light , Models, Chemical , Natural Resources , Photolysis/radiation effects , Seawater/analysis
14.
Front Plant Sci ; 8: 1451, 2017.
Article in English | MEDLINE | ID: mdl-28878792

ABSTRACT

Ongoing changes in Earth's climate are shifting the elevation ranges of many plant species with non-native species often experiencing greater expansion into higher elevations than native species. These climate change-induced shifts in distributions inevitably expose plants to novel biotic and abiotic environments, including altered solar ultraviolet (UV)-B (280-315 nm) radiation regimes. Do the greater migration potentials of non-native species into higher elevations imply that they have more effective UV-protective mechanisms than native species? In this study, we surveyed leaf epidermal UV-A transmittance (TUV A) in a diversity of plant species representing different growth forms to test whether native and non-native species growing above 2800 m elevation on Mauna Kea, Hawaii differed in their UV screening capabilities. We further compared the degree to which TUV A varied along an elevation gradient in the native shrub Vaccinium reticulatum and the introduced forb Verbascum thapsus to evaluate whether these species differed in their abilities to adjust their levels of UV screening in response to elevation changes in UV-B. For plants growing in the Mauna Kea alpine/upper subalpine, we found that adaxial TUV A, measured with a UVA-PAM fluorometer, varied significantly among species but did not differ between native (mean = 6.0%; n = 8) and non-native (mean = 5.8%; n = 11) species. When data were pooled across native and non-native taxa, we also found no significant effect of growth form on TUV A, though woody plants (shrubs and trees) were represented solely by native species whereas herbaceous growth forms (grasses and forbs) were dominated by non-native species. Along an elevation gradient spanning 2600-3800 m, TUV A was variable (mean range = 6.0-11.2%) and strongly correlated with elevation and relative biologically effective UV-B in the exotic V. thapsus; however, TUV A was consistently low (3%) and did not vary with elevation in the native V. reticulatum. Results indicate that high levels of UV protection occur in both native and non-native species in this high UV-B tropical alpine environment, and that flexibility in UV screening is a mechanism employed by some, but not all species to cope with varying solar UV-B exposures along elevation gradients.

15.
Oecologia ; 181(1): 55-63, 2016 May.
Article in English | MEDLINE | ID: mdl-26809621

ABSTRACT

The accumulation of ultraviolet (UV)-absorbing compounds (flavonoids and related phenylpropanoids) in the epidermis of higher plants reduces the penetration of solar UV radiation to underlying tissues and is a primary mechanism of acclimation to changing UV conditions resulting from ozone depletion and climate change. Previously we reported that several herbaceous plant species were capable of rapid, diurnal adjustments in epidermal UV transmittance (T UV), but how widespread this phenomenon is among plants has been unknown. In the present study, we tested the generality of this response by screening 37 species of various cultivated and wild plants growing in four locations spanning a gradient of ambient solar UV and climate (Hawaii, Utah, Idaho and Louisiana). Non-destructive measurements of adaxial T UV indicated that statistically significant midday decreases in T UV occurred in 49 % of the species tested, including both herbaceous and woody growth forms, and there was substantial interspecific variation in the magnitude of these changes. In general, plants in Louisiana exhibited larger diurnal changes in T UV than those in the other locations. Moreover, across all taxa, the magnitude of these changes was positively correlated with minimum daily air temperatures but not daily UV irradiances. Results indicate that diurnal changes in UV shielding are widespread among higher plants, vary both within and among species and tend to be greatest in herbaceous plants growing in warm environments. These findings suggest that plant species differ in their UV protection "strategies" though the functional and ecological significance of this variation in UV sunscreen protection remains unclear at present.


Subject(s)
Acclimatization , Flavonoids/metabolism , Phenols/metabolism , Plant Epidermis/metabolism , Plants/metabolism , Ultraviolet Rays , Climate , Climate Change , Ozone , Propanols/metabolism , Species Specificity , Sunlight , Sunscreening Agents , Temperature , United States
16.
Plant Cell Environ ; 39(1): 222-30, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26177782

ABSTRACT

The accumulation of ultraviolet (UV)-absorbing compounds (flavonoids and related phenylpropanoids) and the resultant decrease in epidermal UV transmittance (TUV ) are primary protective mechanisms employed by plants against potentially damaging solar UV radiation and are critical components of the overall acclimation response of plants to changing solar UV environments. Whether plants can adjust this UV sunscreen protection in response to rapid changes in UV, as occurs on a diurnal basis, is largely unexplored. Here, we use a combination of approaches to demonstrate that plants can modulate their UV-screening properties within minutes to hours, and these changes are driven, in part, by UV radiation. For the cultivated species Abelmoschus esculentus, large (30-50%) and reversible changes in TUV occurred on a diurnal basis, and these adjustments were associated with changes in the concentrations of whole-leaf UV-absorbing compounds and several quercetin glycosides. Similar results were found for two other species (Vicia faba and Solanum lycopersicum), but no such changes were detected in Zea mays. These findings reveal a much more dynamic UV-protection mechanism than previously recognized, raise important questions concerning the costs and benefits of UV-protection strategies in plants and have practical implications for employing UV to enhance crop vigor and quality in controlled environments.


Subject(s)
Abelmoschus/radiation effects , Flavonoids/radiation effects , Hibiscus/radiation effects , Solanum lycopersicum/radiation effects , Vicia faba/radiation effects , Zea mays/radiation effects , Abelmoschus/physiology , Acclimatization , Circadian Rhythm , Flavonoids/physiology , Hibiscus/physiology , Solanum lycopersicum/physiology , Plant Epidermis/physiology , Plant Epidermis/radiation effects , Plant Leaves/physiology , Plant Leaves/radiation effects , Sunlight , Ultraviolet Rays , Vicia faba/physiology , Zea mays/physiology
17.
Plant Physiol Biochem ; 93: 94-100, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25465528

ABSTRACT

The accumulation of UV-absorbing compounds (flavonoids and other phenylpropanoid derivatives) and resultant decrease in the UV transmittance of the epidermis in leaves (TUV), is a primary protective mechanism against the potentially deleterious effects of UV radiation and is a critical component of the overall acclimation response of plants to changing UV environments. Traditional measurements of TUV were laborious, time-consuming and destructive or invasive, thus limiting their ability to efficiently make multiple measurements of the optical properties of plants in the field. The development of rapid, nondestructive optical methods of determining TUV has permitted the examination of UV optical properties of leaves with increased replication, on a finer time scale, and enabled repeated sampling of the same leaf over time. This technology has therefore allowed for studies examining acclimation responses to UV in plants in ways not previously possible. Here we provide a brief review of these earlier studies examining leaf UV optical properties and some of their important contributions, describe the principles by which the newer non-invasive measurements of epidermal UV transmittance are made, and highlight several case studies that reveal how this technique is providing new insights into this UV acclimation response in plants, which is far more plastic and dynamic than previously thought.


Subject(s)
Acclimatization/radiation effects , Plant Epidermis/metabolism , Plant Leaves/metabolism , Plant Physiological Phenomena/radiation effects , Ultraviolet Rays , Acclimatization/genetics , Plant Epidermis/genetics , Plant Leaves/genetics , Plant Physiological Phenomena/genetics
18.
Physiol Plant ; 149(2): 200-13, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23330642

ABSTRACT

Epidermal UV transmittance (TUV ) and UV-absorbing compounds were measured in sun and shade leaves of Populus tremuloides and Vicia faba exposed to contrasting light environments under field conditions to evaluate UV acclimation potentials and regulatory roles of photosynthetically active radiation (PAR) and UV in UV-shielding. Within a natural canopy of P. tremuloides, TUV ranged from 4 to 98% and showed a strong nonlinear relationship with mid-day horizontal fluxes of PAR [photon flux density (PFD) = 6-1830 µmol m⁻² s⁻¹]; similar patterns were found for V. faba leaves that developed under a comparable PFD range. A series of field transfer experiments using neutral-density shade cloth and UV blocking/transmitting films indicated that PAR influenced TUV during leaf development to a greater degree than UV, and shade leaves of both species increased their UV-shielding when exposed to full sun; however, this required the presence of UV, with both UV-A and UV-B required for full acclimation. TUV of sun leaves of both species was largely unresponsive to shade either with or without UV. In most, but not all cases, changes in TUV were associated with alterations in the concentration of whole-leaf UV-absorbing compounds. These results suggest that, (1) moderate-to-high levels of PAR alone during leaf development can induce substantial UV-protection in field-grown plants, (2) mature shade leaves have the potential to adjust their UV-shielding which may reduce the detrimental effects of UV that could occur following sudden exposures to high light and (3) under field conditions, PAR and UV play different roles in regulating UV-shielding during and after leaf development.


Subject(s)
Plant Epidermis/physiology , Plant Leaves/physiology , Populus/physiology , Vicia faba/physiology , Chlorophyll/chemistry , Chlorophyll/metabolism , Dose-Response Relationship, Radiation , Ecosystem , Fluorescence , Plant Epidermis/radiation effects , Plant Leaves/radiation effects , Populus/radiation effects , Sunlight , Ultraviolet Rays , Vicia faba/radiation effects
19.
Physiol Plant ; 138(1): 113-21, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20070846

ABSTRACT

Brief (1-100 min) irradiations with three different ultraviolet-B (UV-B) and ultraviolet-C (UV-C) wave bands induced increases the UV-absorbing pigments extracted from cucumber (Cucumis sativus L.) and Arabidopsis. Spectra of methanol/1% HCl extracts from cucumber hypocotyl segments spanning 250-400 nm showed a single defined peak at 317 nm. When seedlings were irradiated with 5 kJ m(-2) UV-B radiation containing proportionally greater short wavelength UV-B (37% of UV-B between 280 and 300 nm; full-spectrum UV-B, FS-UVB), tissue extracts taken 24 h after irradiation showed an overall increase in absorption (91% increase at 317 nm) with a second defined peak at 263 nm. Irradiation with 1.1 kJ m(-2) UV-C (254 nm) caused similar changes. In contrast, seedlings irradiated with 5 kJ m(-2) UV-B including only wavelengths longer than 290 nm (8% of UV-B between 290 and 300 nm; long-wavelength UV-B, LW-UVB) resulted only in a general increase in absorption (80% at 317 nm). The increases in absorption were detectable as early as 3 h after irradiation with FS-UVB and UV-C, while the response to LW-UVB was first detectable at 6 h after irradiation. In extracts from whole Arabidopsis seedlings, 5 kJ m(-2) LW-UVB caused only a 20% increase in total absorption. Irradiation with 5 kJ m(-2) FS-UVB caused the appearance of a new peak at 270 nm and a concomitant increase in absorption of 72%. The induction of this new peak was observed in seedlings carrying the fah1 mutation which disrupts the pathway for sinapate synthesis. The results are in agreement with previously published data on stem elongation indicating the existence of two response pathways within the UV-B, one operating at longer wavelengths (>300 nm) and another specifically activated by short wavelength UV-B (<300 nm and also by UV-C).


Subject(s)
Arabidopsis/radiation effects , Cucumis sativus/radiation effects , Pigments, Biological/analysis , Ultraviolet Rays , Absorption , Arabidopsis/growth & development , Cucumis sativus/growth & development , Seedlings/growth & development , Seedlings/radiation effects
20.
Physiol Plant ; 133(2): 363-72, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18346077

ABSTRACT

Studies were conducted on three herbaceous plant species growing in naturally high solar UV environments in the subalpine of Mauna Kea, Hawaii, USA, to determine if diurnal changes in epidermal UV transmittance (T(UV)) occur in these species, and to test whether manipulation of the solar radiation regime could alter these diurnal patterns. Additional field studies were conducted at Logan, Utah, USA, to determine if solar UV was causing diurnal T(UV) changes and to evaluate the relationship between diurnal changes in T(UV) and UV-absorbing pigments. Under clear skies, T(UV), as measured with a UV-A-pulse amplitude modulation fluorometer for leaves of Verbascum thapsus and Oenothera stricta growing in native soils and Vicia faba growing in pots, was highest at predawn and sunset and lowest at midday. These patterns in T(UV) closely tracked diurnal changes in solar radiation and were the result of correlated changes in fluorescence induced by UV-A and blue radiation but not photochemical efficiency (F(v)/F(m)) or initial fluorescence yield (F(o)). The magnitude of the midday reduction in T(UV) was greater for young leaves than for older leaves of Verbascum. Imposition of artificial shade eliminated the diurnal changes in T(UV) in Verbascum, but reduction in solar UV had no effect on diurnal T(UV) changes in Vicia. In Vicia, the diurnal changes in T(UV) occurred without detectable changes in the concentration of whole-leaf UV-absorbing compounds. Results suggest that plants actively control diurnal changes in UV shielding, and these changes occur in response to signals other than solar UV; however, the underlying mechanisms responsible for rapid changes in T(UV) remain unclear.


Subject(s)
Circadian Rhythm/radiation effects , Environment , Oenothera/radiation effects , Plant Epidermis/physiology , Ultraviolet Rays , Verbascum/radiation effects , Vicia faba/radiation effects , Photosynthesis/radiation effects , Pigments, Biological/metabolism , Plant Epidermis/radiation effects , Plant Leaves/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...